Paramagnetic 183W N.M.R. Chemical Shifts in Heteropolytungstates

Leonid P. Kazansky^{*}^a and Martin A. Fedotov^b

^a*Institute of Physical Chemistry, Leninski pr.* **37,** *Moscow* **7** *77077, U.S.S.R.* **^b***Institute of Catalysis, Novosibirsk, U.S.S. R.*

The intensity and position of the resonances in the $183W$ n.m.r. spectra of the paramagnetic Ce^{3} ⁺($PW_{11}O_{39}$)₂¹¹⁻ and the diamagnetic Ce^{4} ⁺($PW_{11}O_{39}$)₂¹⁰⁻ complex anions, which have a different solid-state structure, indicate that they also have different structures in aqueous solution; a high degree of electron delocalization from Ce^{3+} to the four adjacent tungsten atoms is deduced from the significant $183W$ chemical shifts.

Some years ago Peacock and Weakley¹ reported a new category of heteropoly-complexes formed by f-elements and the 'unsaturated' $PW_{11}O_{39}^7$ and $P_2W_{17}O_{61}^{10-}$ acting as macroligands. Single-crystal X -ray crystal structure determinations have shown that the anions α -GeW₁₁O₃₉⁸⁻ (see Figure 1) and $P_2W_{17}O_{61}^{10-}$ form a square antiprism around U^{4+} (ref. 2) and Ce4+ (ref. 3), respectively. Later, from the **31P** n.m.r. chemical shifts for solutions containing complex paramagnetic anions, a slightly different configuration was assumed in which the two ligands were rotated relative to each other to a greater extent than was indicated by the X-ray studies.

Recently, direct ¹⁸³W n.m.r. shifts have proved to be very sensitive to the structural non-equivalence of the tungsten atoms.⁵ Encouraged by the possibility of observing the ³¹P n.m.r. spectra of paramagnetic heteropoly complexes, we have now measured the $183W$ n.m.r. spectra of paramagnetic Ce³⁺ and diamagnetic Ce4+ complexes.

Natural abundance ¹⁸³W spectra were recorded, relative to $2M$ aqueous Na₂WO₄, at 300 K on a Bruker CXP 300 Fourier transform spectrometer at 12.5 **MHz** for saturated solutions of $K_{10}Ce^{4+}(PW_{11}O_{39})_2$ and $K_{11}Ce^{3+}(PW_{11}O_{39})_2$ prepared according to the method in ref. I. All high-field shifts are negative.

In the well known Keggin structure $XW_{12}O_{40}x^{-8}$ all the tungsten atoms are identical, as shown by a single resonance in the ¹⁸³W n.m.r. spectra within the relatively small range of -98 to -130 p.p.m. depending on $X⁵$ Removal of one W-O group reduces the symmetry of the anion from T_d to C_s and the expected six-line pattern is observed in the 183 W n.m.r. spectrum.^{5,6} For the complexes Z(ligand), the solidstate structure² has a C_2 axis and the two ligand anions are identical but each anion loses its symmetry plane resulting in non-equivalence of all the tungsten atoms. Also, the projections of the Z-P vectors on the plane perpendicular to

Figure 1. (a) Schematic representation of the complex anion Ce(PW₁₁O₃₉)₂¹². (Letters denote differing tungsten atoms.) (b) Side view of the complex showing the rotation angle ϕ .

the C_4 axis of the square antiprism form an angle ϕ of *ca*. **45"** (see Figure la and b). This staggered conformation found in the two complexes $Z(ligand)_2$ is rather strained and governed by crystal packing forces.^{2,3} Other rotational isomers may be possible in solution.

From the emission spectra of some lanthanoid polytungstates it was deduced that the effective point group around Z is close to D_4 , four oxygen atoms from each of the two anion ligands leading to a cubic co-ordination around Z.^{7,8} Comparison of the emission spectra of the crystalline salts with those of their aqueous solutions has shown that the geometry around Z does not change on dissolution in water.\$

The ³¹P n.m.r. spectra and calculation of dipole interaction chemical shifts allowed the assumption that upon dissolution the geometry of the complex $U^{4+}(P_2W_{17}O_{61})^{16-}$ changes towards a more rotated configuration with $135 \le \phi \le 180^{\circ}.4$ However for the Ce^{3+} (ligand)₂ complex this effect was not so evident owing to the small range of the paramagnetic shifts, but analysis of the ³¹P n.m.r. spectra of $Dy(P_2W_{17} O_{61}$ ₂¹⁷⁻ and $Ho(P_2W_{11}O_{61})$ ²¹⁷⁻, which show two-line patterns with chemical shifts of -21.7 and -95.1 p.p.m., and -21.4 and -92.6 p.p.m., respectively, leads to $\phi = 90^{\circ}$ assuming a cubic co-ordination around $Ln³⁺$.

$$
Ce^{3+}(PW_{11}O_{39})_2^{11-} \t Ce^{4+}(PW_{11}O_{39})_2^{10-}
$$

(1) (2)

As in the ³¹P n.m.r. spectra, the resonances in the ¹⁸³W n.m.r. spectrum of the paramagnetic complex **(1)** (Figure 2a) are fairly sharp, and the spectrum is unexpectedly very simple, comprising a six-line pattern. This suggests that the complex **(1)** should have a symmetry plane, as for the uncomplexed ligand. This configuration is only possible with $\phi = 0$ or 180°. Molecular models favoured a more rotated isomer with the C_2 axis perpendicular to the symmetry plane

Figure 2. (a) ¹⁸³W N.m.r. spectrum of $Ce^{3+}(PW_{11}O_{39})_{2}^{11-}$ (1) (δ + 349, +193, -114.8, 116.7, and 141.5 p.p.m.) and tentative assignments. (b) ¹⁸³W N.m.r. spectrum of $Ce^{4+}(PW_{11}O_{39})_{2}^{10-}$ (2) $(8 - 105.8, -110.3, -116.6, -120.5, -138.0, -142.3, -152.3,$
and -175.7 p.p.m.) and position of the resonances in the last W
n.m.r. spectrum of SiW₁₁O₃₉⁸⁻ taken from ref. 5, with the assignment taken from ref. 6. **(2)** (δ -105.8, -110.3, -116.6, -120.5, -138.0, -142.3, -152

in which the close approach of four terminal oxygen atoms bonded to the tungsten atoms of B-type of the two anions is avoided.

A rather complicated ¹⁸³W n.m.r. spectrum is observed for the diamagnetic complex **(2),** indicating a somewhat different structure. The spectrum (Figure 2b) corresponds to one of three possible isomers with $\phi = 45$, 90, or 135°. In view of the tendency of the complexes to have a more rotated configuration and cubic co-ordination around the lanthanoid atom the isomers with $\phi - 45$ and 135° may be ruled out. The spectrum clearly shows that the symmetry plane for each ligand anion is absent and that one of the four W atoms (type **A')** near the vacancy has an unusual co-ordination $(\delta -175 \text{ p.p.m.})$. The chemical shifts for the complex (2) are similar to those found for the 'unsaturated' $\text{SiW}_1\text{O}_{39}^{8-}$ (ref. *5).*

As far as is known⁹ the isotropic n.m.r. shifts of paramagnetic complexes may result from either or both of two different mechanisms. One produces a contact interaction leading directly to the spin densities in the s orbitals of the magnetic nuclei. Usually these orbitals do not overlap with spin-containing metal ligands and they acquire unpaired electron density indirectly from other ligand orbitals. The second mechanism gives rise to a dipolar or pseudocontact interaction between electronic and nuclear spins. The dipolar shift δ_d for a complex with axial symmetry is often expressed by equation (I), where *K* is a product of constants for a given

$$
\delta_{\mathbf{d}} = -K \cdot \mathbf{R}^{-3} \left(3\cos^2\theta - 1 \right) \tag{1}
$$

complex, and θ is the angle between the vector **R** (distance between the resonating nucleus and central paramagnetic atom) and the principal symmetry axis of the whole complex.

For the complex (1) if we take into account a ³¹P n.m.r. δ_d for (1) and La(PW₁₁O₃₉)₂¹¹⁻ of -6.1 p.p.m., calculations of the chemical shifts due to only Ce-W dipolar interaction show that the range of δ_d does not exceed a few p.p.m. The resonance assigned to tungsten atoms F should undergo a down-field shift and those due to the remaining tungsten atoms an up-field shift due to dipole interaction. If we use the mean value of the split resonances for **(2)** as a reference, only two lines undergo an up-field shift. The remaining resonances are shifted to low field. If contact interaction results in paramagnetic shifts, especially for the tungsten atoms **A** and B owing to f-electron delocalisation, some electron transfer should also take place onto neighbouring tungsten atoms. This would be most likely for atoms *C* and F since they have a quasilinear (150°) W_c-O-W_A bridge as opposed to atoms **D** which have a bent (120 $^{\circ}$) bridge W_B-O-**W,.** The larger angle is more favourable for electron transfer. On this assumption the observed resonances should be assigned **as** indicated in Figure 2a.

A more detailed picture may emerge as more results are obtained for paramagnetic complexes in which the configuration of the complex anion is rigid, *e.g.*, $U^{4+}(Ce^{3+})$ -
W₁₀O₃₈⁸⁻⁽⁹⁻). These, as well as the complexes $U^{4+}(P_2W_{17})$ - \mathbf{O}_{61} ¹⁶⁻ and $\mathbf{U}^{4+}(\mathbf{PW}_{11}\mathbf{O}_{39})$ ¹⁰⁻ which show high paramagnetic shifts in their ¹⁸³W n.m.r. spectra, are being studied.

The ¹⁸³W n.m.r. spectra of paramagnetic complexes thus clearly show electron transfer from the central atom onto the tungsten atoms through oxygen bridges having a high degree of covalent character. This provides **a** new way of studying electron delocalisation in reduced polytungstates.

Dr. **V.** Molchanov's help is gratefully acknowledged.

Received, 27th August 1982; Corn. 1035

References

- 1 R. D. Peacock and T. **J.** R. Weakley, *J. Chem. SOC. A,* 1971, 1836.
- 2 C. M. Tourne, G. F. Tourne, and M. C. Brianso, *Acta Crystallogr., Sect. B,* 1980, *36,* 2012.
- 3 **V.** N. Molchanov, L. P. Kazansky, **E.** A. Torchenkova, and *V.* 1. Simonov, *Kristallografia,* 1979, **24,** 167.
- **4 M.** A. Fedotov, **V.** N. Molchanov, L. P. Kazansky, E. A. Torchenkova, and *V. I.* Spitsyn, *Dokl. Akad. Nauk SSSR,* 1979, **245,** 377.
- 5 R. Acerete, *C.* F. Hammer, and L. *C.* W. Baker, *J. Am. Chem. SOC.,* 1979, *101,* 267.
- 6 0. A. Gansow, R. **K.** C. Ho, and W. G. Klemperer, *J. Organomet. Chern.,* 1980, *187,* C27.
- 7 R. D. Peacock and T. **J.** R. Weakley, *J. Chem. SOC. A,* 1971, 1937.
- 8 **M. J.** Stillman and A. *J.* Thomson, *J. Chem. SOC., Dalton Trans.,* 1976, 1138.
- 9 G. A. Webb, *Annu. Rev. NMR Spectrosc.,* 1975, 6A, 2.